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Diffusive evolution of stable and metastable phases. Il. Theory of nonequilibrium behavior
in colloid-polymer mixtures
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By analytically solving some simple models of phase-ordering kinetics, we suggest a mechanism for the
onset of nonequilibrium behavior in colloid-polymer mixtures. These mixtures can function as models of
atomic systems; their physics therefore impinges on many areas of thermodynamics and phase ordering. An
exact solution is found for the motion of a single, planar interface separating a growing phase of uniform high
density from a supersaturated low-density phase, whose diffusive depletion drives the interfacial motion. In
addition, an approximate solution is found for the one-dimensional evolution of two interfaces, separated by a
slab of a metastable phase at intermediate density. The theory predicts a critical supersaturation of the low-
density phase, above which the two interfaces become unbound and the metastable phaad griinitim
The growth of the stable phase is suppressed in this red®i€63-651X97)03311-4

PACS numbgs): 82.70.Dd, 64.60.My, 05.70.Ln

I. INTRODUCTION system is now recognized as being one of the simplest ex-
mples of that phenomenon and has become a testing ground

Metastability and phase transition kinetics in condense or sophisticated theories].

matter are rapidly expanding fields of reseai€f2]. Experi- In recent work aimed at elucidating the equilibrium phase
mentally, it is increasingly realized thablloidal systems pepayior of mixtures of nearly-hard-sphere colloids and non-
exhibit unique properties which make them attractive candiygsorbing polymers, we have also observed a rich variety of
dates for studying these topics. Advances in synthetic chemyonequilibrium behaviof6,7]. The well-characterized nature
istry mean that suspensions of particles of well-characterizegf our experimental system, coupled with detailed data from
shapes and sizes, and with precisely tunable interparticle insmall-angle light scatterinfj7], has allowed us to suggest a
teractions, can be routinely produced. Tewiilibriumphase  possible link between the onset of formation of nonequilib-
behavior of such model colloids can be studied experimenrium phases and the presence of a “hidden,” metastable
tally and understood in some detail using the standard toolminimum in the free-energy landscape. In this paper, we re-
of statistical mechanic§3]. Moreover, colloids are much view the experimental evidence leading to this suggestion
larger than atoms, the typical dimension of a colloid beingand model the kinetic consequences of such a three-minima
L~0.5 um, and the solids they forifcrystal, glass, and gel free-energy landscape in one dimension using a continuum
are mechanically weak, a typical modulus being@pproach. We conclude by pointing to the possible applica-
G~kgT/L3~10"2 Nm~2. Thus a colloidal crystal can be tions of this model in other “soft” systems. Some of our
“shear melted” to the metastable colloidal fluid state simply WOrk relies on results from the preceding paf; the main

by shaking. Structural dynamics of colloidal systems are alséfl€as are summarized [8].

slow, the scale being set by the time a free particle takes to

diffuse its own dimensionyr~L?2/D. Estimating the diffu- Il. NONEQUILIBRIUM BEHAVIOR IN COLLOID-

sion coefficientD by the Stokes-Einstein relation for a POLYMER MIXTURES

spherical particle of radiud.~0.5 um suspended in a  Free polymer alters the phase behavior of colloids via the
ligud of viscosity 7~10"3 Nm™2s, we get depletion mechanismil0]. Exclusion of polymer from the
D=kgT/6myL~4x10 ' m? s™%, so that the characteris- region between the surfaces of two nearby colloidal particles
tic relaxation time in colloidal systems =1 s. Thus the gives rise to an unbalanced osmotic pressure pushing the
crystallization of a metastable colloidal fluid can take min-particles together, resulting in an attractive depletion poten-
utes, hours, or even days. These two features, the ease wiilal Uqep,. In the case of hard-sphere-like colloids, the total
which metastable states can be prepared and the long relaixterparticle interactiori11] in the presence of polymers is
ation times involved, mean that the study of phase transitiogiven approximately by

kinetics and metastability in model colloids is gaining in-

creasing attention. For example, there is a growing literature e for r<o
on crystallization kinetics in nearly-hard-sphere goigthyl U(r)={ —p(up)Voverag=Ugep for o<rso+2rq
methacrylatg colloids [4]. The glass transition in the same 0 for r>a+2rg,
(o
*Electronic address: r.m.l.evans@ed.ac.uk where o=2a is the particle diameter antl,(up) is the
"Electronic address: w.poon@ed.ac.uk osmotic pressure of the polymer as a function of the polymer
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FIG. 2. Fluid and crystal branches of the free-energy density

FIG. 1. Phase diagrams of colloid-polymer mixtures in the col-ersus colloid volume fractiofe) at low polymer chemical poten-
g poly % in Fig. 1(b)], when the fluid branch has a single

. . . : tial [e.g., u
loid concentration g) —polymer chemical potential(,) plane, for ] p . ) ) mah
size ratio& (a) above and(b) below é;. The dotted curve is a minimum, and(b) at higher polymer chemical potentigd.g., 1,

“hidden” gas-liquid binodal. For(b), the free-energy plots for two in Fig.. 1(b)], when two minima gxigt in the fluid branch, corre-
polymer chemical potential;u'o‘” and’uhigh are shown in Figs. (@) sponding to gas and metastable liquid phases. The common tangent

and 2b), respectively. The variues goffc?r the various boundaries at construction is used to find the densities of the coexisting equilib-
; : rium gas and solid phaseg{,ps), and the metastable gas-liquid

_, high f . . .
lzL(;)',up are given by the common tangent construction in Flg'and liquid-solid binodalsgs py) and (. p): see Fig. 1b).
higher w,,, or higher colloid concentration, the behavior be-
chemical potentialey . Voyenapis the volume of the overlap- comes “spinodal-like,” switching finally to a “transient ge-
ping depletion zones between two particles at an intercentdation” regime for the densest systems.
separation of . Explicitly It should be stressed that the experimentally observed
NEB is sharp and highly reproducible. In fact, it has been
suggested by one of UF] that this boundary is given by a
hidden gas-liquid binodal. Following the theoretical ap-
(2)  proach in[10], we write the free energy(p,u,) of a
colloid-polymer mixture as a function of the colloid volume
whereé=r4/a denotes the ratio of the radius of gyration of fraction (or “density”) p and the polymer chemical potential
the polymerr g to the radius of the colloidal particle. up . F can be calculated within a mean-field framework for a
Theory[10] predicts and experimenfd1] show that the disordered arrangement of colloids and polymers, the “fluid
phase diagram of a mixture of hard-sphere colloids and norbranch,” and an ordered arrangement of colloids with poly-
adsorbing polymer is a function of the size ragioThe phase mers randomly dispersed, the ‘“crystal branch.” At low
diagram at large enoughis reminiscent of that of a simple polymer chemical potentials, the fluid and crystal branches
atomic substancgFig. 1(a)], with the polymer chemical po- both show a single minimurfFig. 2(a)]. This gives rise to
tential (up) playing the role of an inverse temperature. single-phase fluid g<p,), fluid-crystal —coexistence
(Temperature itself is not an axis of the phase diagram betp,<p<ps), or single-phase crystalptps). The colloid
cause, in systems with only excluded-volume interactions, n@oncentrations in coexisting fluid and crystal phases are ob-
energy scale existgl2].) Colloidal gas, liquid, and crystal tained by the common tangent constructisee, e.g.[13]).
phases are possible, with regions of binary coexistence be- At higher polymer chemical potentials, however, the fluid
tween pairs of these phases and triple coexistence at a pdsranch of the free energy shows a “double minimum” struc-
ticular value of u,. As the size ratio¢ is decreased, the ture[Fig. 2b)]. At larger polymer to colloid size ratios, this
region of colloidal gas-liquid coexistence shrinks until, be-double minimum can give rise to a region of colloidal gas-
low a critical valueé.;, the gas-liquid coexistence region liquid coexistence in the equilibrium phase diagréfig.
disappears altogether from the equilibrium phase diagram(a)] [10,11]. For small polymers, however, the theory pre-
[Fig. 1(b)]; now, only colloidal fluid or crystal phases exist dicts only separation into fluid and crystal phases. Neverthe-
in equilibrium. Experimentally¢,~0.25. less, the “metastable gas-liquid binodal,” which is “buried”
Focus now on the phase diagram for the casé<of.;  within the fluid-crystal coexistence region predicted by equi-
[Fig. 1(b)]. Experiments confirm that moderate concentra-ibrium thermodynamics, can still be traced d&ig. 1(b)].
tions of a small nonadsorbing polymer cause a suspension dhe equilibrium phase boundary and the metastable gas-
hard spheres to phase separate into coexisting colloidal fluituid binodal, calculated using the theory [ib0], compare
and crystal phases. At higher colloidal concentrations, owell with the experimental equilibrium fluid-crystal coexist-
higher u,, across anonequilibrium boundaryNEB), crys-  ence boundary and the nonequilibrium boundary respectively
tallization is suppressefb], [7]. Instead, a variety of non- [7], giving rise to the speculation that the suppression of
equilibrium aggregation behaviors is observed. Detailectrystallization, which is the predicted, equilibrium phase be-
small-angle light-scattering studigg| have allowed the clas- havior, is linked to the presence of the hidden gas-liquid
sification of the kinetic behavior above the NEB into threebinodal.
types. Just across the NEB, the behavior is “nucleation- In this and the preceding papid], we provide a theoret-
like.” This is characterized by an initial latency period con- ical basis for this speculation. We model the effects of a
sistent with nucleation, after which dense, amorphous dropmetastable third minimum in the free-companion energy
lets separate out, forming an amorphous sediment that begimsirve on the kinetics of phase ordering, focusing on post-
to crystallize only on a much longer time scale. The nuclenucleation kinetics. A system that has been homogenized
ationlike regime is of primary interest to us in this article. At (e.g., by shear meltingo some uniform density betweegn
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and pg (see Fig. 2 must evolve towards the equilibrium of proportionality as a function of the supersaturation of the
state, by separating into regions of dengigyandps. If f(p) ambient medium. This problem was solved, using a different
has positive curvature at the initial density, then the evoluapproach, by FranK15]. Our solution by an alternative
tion begins by nucleation, whereby a thermal fluctuationmethod is presented both for completeness and to introduce
causes part of the system to cross the barrier between the twwotation. The results obtained in this section will be used in
stable wells inf. Once such a nucleus has form@d the  Sec. IV to investigate the effect on interfacial motion of a
early stage of phase orderingt grows by diffusively deplet- “metastable minimum” in the free-energy landscape.
ing the surrounding, supersaturated medigtine growth
stage[14]). A. Idealized model

In the preceding papdB], we consider the implications
for short-range(on the length scale of the transition zone
between neighboring phagetensity variations and stability,
in the context of quasi-steady-state motion. There, and
Ref. [9], it is shown that an interface between regions o
different densities may split, in the presence of a metastabl
minimum, into two parts. The purpose of the present articl
is to model the evolution of a split interface during the
growth stage, considering large length scdkes interfaces
appear as sharp steps, and relatively gentle concentrati . . _
gradients control the diffusive dynamjcand time scale$so 0 the evolut|or_1 of th? systemlls solely due to thg dynam|cs

of the low-density region. In this phase, the density jsat

motion is time dependent, not steady stae will find that . )
P y Sta the interface X=x,) and tends asymptotically to the super-

growth dynamics involving split interfaces contrasts greatly ;
with normal growth behavior. saturated valugpy+o as x—. The assumption that the

The plan of this paper is as follows. The model introduceddensity (@nd hence chemical potentias fixed at the equi-
in Sec. Ill, involving a nucleus with an ordinary, unsplit ibrium value [given by the double-tangent construction in

interface, sets the scene for the methods employed. It is Big. 2] at t.he interface is physically valid if_thg interface
completely soluble model for the motion of a single domainMoVves sufficiently slowly8]. The problem of finding(t)

wall. The result agrees with that of Frafiks]. In Sec. Iv, S that of solving the diffusion equation

we analyze a more elaborate scenario, where two domain 5

walls (the two parts of a “split” interfacg enclose a region ‘7_p: D&_p

of metastable density and compete for the flux of condensing ot ax2’

material. This model exhibits behavior consistent with the

non-equilibrium boundary in the colloid-polymer phase dia-with boundary conditiong(,t)=p4+ o and

gram. The limitations of our work are discussed in Sec. V,

while applications to related systems are given in Sec. VI. p(X1,t)=pg, ©)

In the models presented, growth is limited by diffusion of . i .
matter only. This simplification holds in many soft con- with a moving boundary at,(t), whose velocity depends on

densed systems, for which diffusion of latent heat is irrel-th€ flux at that point since, by conservation of matter at the

evant since the entropy is dominated by the degrees of fredterface,

dom of the solvenf12]. Moreover, we assume that the . ,

system may be described bysigleconserved order param- (Ps=pg) X1=Dp'(X1). (4)
eter(such as the density of colloidal particleBormally, this I . .
does not apply in colloid-polymer mixtures, where the pon-The, initial .condltlons are =0 "’?”dp(>.<>x.l):f’9+“- with
mer concentration is a second conserved quantity. Howeveft Singularity atx=x, (see the inset in Fig.)3since p(x,)
it should be a reasonable model for smallsuch that the _ Pq¥ t- The system is depicted, at some later time Fig.
polymers diffuse much more rapidly than the colloids. Non-*"

conserved order parameters describing crystallinity are also

omitted, under the assumption that such variables relax B. Solution

quickly compared v_vith.the diffusive order parameter and are Solving the diffusion equation with a moving boundaay
therefore not rate limiting. Stefan problemis difficult. The problem is overcome by
replacing the semi-infinite region in which the diffusion
equation is to be applied, by an infinite region, with a source
or sink atx,, whose strengtts(t) is such that the region
X>X; cannot distinguish it from a moving interface. The

In this section, we find an exact solution of a problembehavior inx<x,, which is just a construct of the method,
pertinent to the intermediate- to late-stage evolution of ashould simply be ignored. The initial conditions in this re-
two-phase system. It is well knowrd4] that, when a dense gion may be freely chosen to facilitate the solution. Let
droplet grows into a surrounding, supersaturated mediump(x#x,(0) ,t=0)=py+ o and lety be defined as the devia-
the speed of motion of the interface is proportionattd’2>.  tion from this ambient densityy=p—py—o. So the equa-
We solve an idealized one-dimensional model for the motiortion to be solved is the diffusion equation with a source at
of a single interface in such a situation and find the constamt=x,(t),

Consider an infinite, one-dimensional system whose equi-
librium state is two-phase coexistence, which has been ho-
iﬁnogenized to a uniform densitg.g., by shear meltingIn
fthe system, a region of the high-density phase has nucleated
at its equilibrium density and the interface between the high-

nd low-density phases has locally equilibrated. The domain
wall proceeds to move by depleting the supersaturated low-
density phase. Let the interface be located-ak,(t) and let
(@e density of the high-density phase be uniformpatps.

Ill. EXACT SOLUTION OF THE DIFFUSION EQUATION
FOR TWO-PHASE SEPARATION
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FIG. 3. Graph of density against positiorx. On the left is the 03 0 03 g _
dense region that has been nucleated and is growing at the uniform :08 - IOg
densityp,, which is its equilibrium density. The interface is located ) o ) )
atx=x4, which is a function of time, since matter is flowing down FIG. 4. Velocity coefficient versus relative supersaturation.

the concentration gradient in the sparse phase and condensing onto

the high-density region. At the base of the interface, the density i he right-hand side of Ed6) is independent of, and hence
that of the coexisting gag, . The “ambient” density far from the thet dependence must be removed from the exponential in
interface ispy+ 0. Inset: the initial ¢=0) configuration of the sys- the integrand. This requires

tem, with a singularity at the base of the domain wall.

x,(t)=a\Dt ®)
Y 57 sxxalt) st )
—=D—=—8(X—Xx s(t),
ot x? ! and hences(t)=b/(D/t), wherea andb are constants in

time. Substituting into Eqs6) and (7) and evaluating the
with the wall positionx;(t) and the construcs(t) fixed by  integrals(see the Appendjxresults in a closed-form expres-

the boundary conditions. Equati@B) is solved by sion relating the coefficierd to the relative supersaturation,
t o
y(x,t)z—J dt’J' dx’ G(x—x',t—t") i :Eaeazmerfcé (9)
0 - Ps™ Pg 2 2

X S(x"—x,(t"))s(t’
( (t)s(t) where erfc is the complementary error function, erfc

x=1— erf x. The coefficientb is not of particular interest,
but we note that it is of the formpg—pg) X [function of
2 al(ps— pg)]-
1 exp{i We have chosen to use the initial conditiep{0)=0 in
AmDt 4Dt deriving Eq.(8), but clearly the origin ok, is arbitrary since
the physics is translation invariant and does not depend on

Hence the density field is given in termssgf) andx,(t) by ~ the initial size of the dense region. The velocity of the inter-
face, on the other hand, is well defined:

using the Green'’s function

G(x,1)=

imor o [ ) [x—x,(t)]? .
X, )= - ex . .
PRETP T o™ ambt-t) ¢ aD(t-t) n%\@- (10

Applying Egs.(3) and(4) gives us two integral equations in ) ) ) -
the two unknown functions, (t) ands(t), valid for all posi- ~ Equation(10) lends a physical meaning to the coefficient
tive t: and so we will refer to it as the "velocity coefficient.”

Equation(9) is plotted in Fig. 4 fora as a function of
al(ps—pg). The validity of the model extends to negative

' _ 12
tdt/ st exp— [xa(D) = xa(t)] — Y2 ()  supersaturations, which result in evaporation of the dense
0 VAD(t—t") AD(t—t') phase and hence negatige The curve plotted in Fig. 4 has

no special features in the negative quadrant. As the relative
supersaturation tends to negative infinity, the behavior of the
velocity coefficient is given by

fdt' [X2(t) —x4(t")] s(t") ox [Xq(t) = X4(t")]?
0 [4D(t—1")]%? - 4D(t—t")

7"':L/Z(IJS_PQ)- o ( -0 )
:Txl(t)_ 7) a 24/ In pe—rpal
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C. Linear and nonlinear regimes =0

For small relative supersaturatigolose to the origin of
Fig. 4), Eq. (9) tends to a linear relation

2 ( o
a— ——=
Ps™ Pg

- (11 Pt olia © 0 = x
Po

NG

From Eq. (4) we see that the flwonto the interface is
J cond= (Ps— Pg) X,. If we substitute Eqs(10) and (11) into
this expression, we see that the flux of material from the ™
dilute phase condensing onto the interface is

Jcona— oD/t (12

in the linear regime. Thls IS mdependemmj_ Py and de- FIG. 5. Graph of density against positiorx. The interface at
pends only on properties of the dilute phase. So the conder;n(—1

. . i X separates the gas phase from the metastable liquid and is locally
sation flux becomes independent of properties of the Int":'r('aquilibrated so that the discontinuity in the density is between the

face in this regime. The physics behind this statement is a8\etastable binodal valuep, pg). The flux into(out of) the inter-
follows. The density at the base of the interface is maintaineghce isj, (jg). The fluxjc of material of densityc impinges on

at the constant valugy and this gives rise to a gradient, and the interface ak,, which separates the metastable liquid from the
hence a flux, in the supersaturated dilute region. This gradisolid region of uniform densitpy . The ambienti.e., asymptotig

ent diminishes with time as material is depleted from thedensity of the gaseous phase is the supersaturated patie’.
region, but is enhanced by the motion of the wall. It is clearinset: the initial configuration of the system, with a uniform gradi-
from Fig. 3 that moving the wall to the right must accentuateent between the domain walls andsaunction singularity in the

the gradient. In the linear regime, the motion of the wall isgas phase at;.

slow enough for this enhancement of the gradient to be in-

significant, and the flux onto the interface varies with time agy-s interface has the fixed densitiepy(,ps), given by the

if the boundary to the diffusive region were fixed. In Fig. 4 double-tangent constructidi3] in Fig. 2(b). Accordingly,

we see that the model gives rise to a divergefatbeit un- at ag-l interface the densities arep{,pg) and at anl-s
physica) of the velocity coefficient at a relative supersatura-interface, pc,pp), Which are the metastable coexisting val-
tion of unity. The reason for this is now clear. At this super-ues given in Fig. ).

saturation, the nonlinearity described above, whereby the Consider the idealized system introduced in Sec. lll,
interface motion enhances the gradient, becomes extremehere a region of the dense solid has appeared in an other-
The interface can never deplete the “low”-density regionwise homogeneous, supersaturated system. The ambient den-
and hence the gradiefiand therefore the fluxat its base sity is within the gas well of the bulk free-energy density. As
remains infinite. Based on the exact solution of this simplebefore, the dense region will grow by depleting the super-
model for interface motionspecifically Eq.(12)], we pro-  saturated dilute region, but we can now imagine two alterna-

liquid (1)

G’

X2 X1 X

ceed to study a more elaborate situation. tive ways in which the growth can proceefither a g-s
interface propagates into the dilute phase, and the system
IV. METASTABLE PHASE EVOLUTION BETWEEN TWO evolves as in Sec. lllpr g-1 andl-s interfaces form, and
COMPETING INTERFACES propagate separately, their motion being controlled by diffu-

sion both in the ambient dilute region and in the intervening

It was noted in Sec. Il that the onset of nonequilibrium region of metastab'e ||qu|d Once formed,gas interface
behavior in colloid-polymer mixtures seems to be connecte%ropagates stably with respect to small perturbat[@hsnd
with the appearance of a third minimum in the free-energycannot easily be split intg-l andl-s parts. Hence, which of
density, corresponding to a metastable liquid phase. Specifihese two modes of growth the system exhibits depends on
cally, the formation of amorphous, nonequilibrium materialhich was initiated at the nucleation stage. The criteria for
from nucleationlike dynamics begins to occur at a supersatuyhich mode is initiated during nucleation in a given system
ration of the gas phase close to the hidden gas-liquid binodajre unknown at present, although there has been some con-
We now develop a model for the phase-ordering dynamics iflecture[8,9]. Let us accept that the split-interfacg-( and!-
systems with a third minimum of this kind. s) mode of evolution has begun in our one-dimensional sys-

In a system with such a three-well potenfialich as that  tem and calculate the subsequent growth dynamics.
illustrated in Fig. 2Zb)], three different species of interfaces

may exist between regions of the various locally stable den-
sities, during intermediate- to late-stage ordering. If the gas,
metastable liquid, and solid phases are dengtgdands, The density profile of the system in question, at some
respectively, therg-l, |-s, and g-s interfaces may move timet, is depicted in Fig. 5. Thg-l interface is positioned at
through the system. If we use the “equilibrium interface” x;(t) and the constant densitigg, and pg immediately ad-
approximation, as applied in Sec. lll, defining the densitiegacent to it are marked, as are the flujgét) andjg(t) in
above and below each interface to be the coexistence valuand out of the interface, which are defined in the direction of
for equilibrium between the two neighboring phases, then dhe arrows and are functions of time. Ths interface is at

A. Model system
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X»(t). The flux of material of densitp¢ into this interface is  with the ends held at different temperatuyds. this sense,
jc(t). There is no output flux, as the solid phase has a unithe liquid region is constantly in a state of relaxation towards
form density pp. Let us make the model as general anda uniform density gradient, for which E¢L6) applies.
physically realistic as possible by allowing different diffu- Let us defineA to be the size of the metastable liquid
sion constants in the different phasd3; in the gaseous region: A=x;—X,. Then substituting Eq915) and (16) in
phase and, in the metastable liquid. The supersaturatedEgs.(13) and(14) gives us the differential equation

density at infinity is defined ap,+ o’ in the figure. The

“adjusted supersaturationd’ is distinct from the supersatu- da —(t/ )71/2_1 (17)
ration o used in Sec. lll. If the ambierfasymptotig density d(t/r) T 2A°
iS p., then the supersaturation is the deviation of this density
from the equilibrium valudthe stablebinoda), which isp, ~ With a constant
in this system, i.e.g=p..—py. On the other hand, thad- 2
justed supersaturation is the deviation from the metastable = PB_PA) (18
binodal,o’ =p..— pa. D\ o’
Clearly, conservation of matter at the interfaces leads to
the equations which has units oftime)/(length 2, and a dimensionless con-
. stant y, which acts as an attractive coupling between the
(pe—pA)X1=]a— B, (13 walls, given by
(po—pc)X2=]c- (14 _ PB~ PA 2D2 1 1
y=2 D—(PB_PC) ——t — .

Using these relations, we could proceed in the same manner ! PBPA PO PC
as in Sec. Il B, but this time solving two coupled diffusion (19)

equ?éu?]ns. L %q?r?t'tofn f?hr tlhe %aseo_us regllc:jq-he formula fory is quite easy to understand. It is a ratio of
would have one source and that for the Tiquid region WoulGy ,antities that drive the interfaces togetfredating to diffu-

have two. The strengths and positions of the sources woul ion in the metastable -
: g phase those that drive them apart
be fixed by Eqs(13) and (14) and by fixing the constant (relating to the gaseous regjoft is proportional to the ratio

densitiespa, pg, andpc . Equation(13) would couple the ¢ yhe giffusion constants and to the difference in densities
two equations. Proceeding in this manner to try to find A, — pe) that drives flux through the liquid region. This
exact solution for the evolution of the system would lead tOjjgterence is made dimensionless by the factor following it,
five coupled integro-differential equations in five unknown which is dominated by the interface of smallest height. These

functions[xl(t), X2(t), and thg strengths of three sour}:es_ guantities are divided by the square of the relative supersatu-
is not easy to spot the solutions to this system of equationsg,.on \which is responsible for driving the-l wall away
as it was for Eqs(6) and(7). Instead, we will make progress from t’hel—s wall

by introducing some physically reasonable approximations.

L C. Solution
B. Approximations

In Eq. (17), v has a critical value of unity, above which

The first approximation is to decouple tligel interface the solution may be expressed parametrically as

from the gaseous driving region by using Ed2) for the

input current: Ao 0
) t/r= siné exp ,
JA%O',\/D]_/’Ft. (15) \’)/_1 \/’y_l
This becomes exact ag’—0 and will presumably give A i
qualitatively meaningful results at higher supersaturations, A= 0 (sind+\y—1 cod) exp (20
although witho’ becoming someeffectivesupersaturation, vy—1 vy—1

deviating from the true value. We usé rather thars in Eq. )
(15), as the boundary conditiop(x;) — pa=0 was used in for values of the parameterd in the range

its derivation. O<f=<m—arctan/y—1. HereA, is the initial size of the
As a second approximation let metastable region. A critical value of implies [from Eq.
(19)] a critical valueo . of the adjusted supersaturation. The
. PB—PC conditiony>1 corresponds to’' <o.. We see that a graph
JB%JC%DZH’ (16) of A versus\/f is an affine deformation of a logarithmic

spiral and the restricted domain éfgives a branch thereof
which says that the gradient in the liquid region is approxi-in the first quadrant. Hence the metastable region has a finite
mately uniform. Intuitively, this seems to be a reasonabldifetime sinceA decays to zero at some positive valuet of
assumption. If we imagine that, at some time into the evoluWe will refer to these solutions as “diffusively bound,” to
tion, the positions of the interfaces could suddenly be frozendistinguish from the tighter binding due to curvature energy
then the liquid region would subsequently relax exponenin the Cahn-Hilliard model, which prevents a singjes in-
tially towards a uniform gradientCompare the related dif- terface splitting intay-I andl-s parts[8]. Furthermore, there
fusion problem of the temperature profile in a conducting rods no solution forAy=0. Hence, fore’' <o, the flux of
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A ()
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FIG. 6. (a) Size of the metastable regian [as given in Eqs(20)—(22)] against timet in units of the constant, for various values of
the coupling constany. Diffusively bound solutions are marked with a dotted line, for3, y=2, and y=1.8. The marginal solution
(y=1) is dashed, and unbound solutions are plotted with solid lineg;#d.8 and 0.1. In each case, the initial size of the metastable region
Ag is unity. (b) Same plots, produced by numerical solution, without the approximatidsnd(16). The same values of are used as in

(a).

condensation cannot, even momentarily, separategthe though always dwindling, is sufficient to separate thé
from the I-s wall if they are initially together. The diffu- from thel-s interface, causing the metastable liquid phase to
sively bound solutions foA as a function ot/ 7 are plotted grow ad infinitum This is even true in the extreme case
with dotted lines in Fig. @) for various values ofy, with  whereAy=0, when the solution becomes

Ap=1. Notice that the gradients of the curves are infinite

where they meet each axis. The infinite gradient-a0 A=(1+J1-y )\/m- for y=1. (23
arises from the infinite flux of condensing material due to the

singularity in the density at the base of the interface. At  Equation(23) is also the limit of Eq.(22) ast—, so the

A =0, the metastable region decays infinitely fast since thé&ize of the metastable region at late times is independent of
density gradientgg— pc)/A diverges. Of course, in a physi- its initial value.

cal situation, the gradient af(t) would be flattened in both ~ T0 check the validity of Eqs(15) and(16), we have nu-
instances since the densitiepa(pg) do not truly remain Merically solved the system described in Sec. I\WAthout
constant for a fast-moving interface. Once the interfaciathe approximations made in Sec. IV.BThe results plotted
separation collapses to zero, the model breaks down. In a rell Fig. &b) are for D,/D;=0.1. The variation ofy was
system, the interfaces would combine into a single, stabl€ontrolled by varyinge’ only. These results compare well

g-s interface, which would continue to advance. with the apprOXimate, closed-form solutions in Flga)GThe
At the critical valuey=1, Eq. (17) has the parametric Same qualitative featuréspen or closed trajectorieappear
solution and the critical value ofy is close to unity. The lifetimes of
the bound solutiongwhich are very sensitive to the system
VU T=A0(p+1) expp, parametensagree to within a few percent for systems not too
close to criticality. For the topmost trajectory in Figlbh
A=Aqp exps, (2D o’l(pg—pa)~50% so some deviation from lineariffeq.

(15)] is to be expectedsee Sec. lll ¢ We conclude that
and for y<1 (i.e., above the critical supersaturatipthe  Eqgs.(15) and(16) are quantitatively reasonable, and qualita-
solution is tively very good, approximations.

In summary, the asymptotilate-time or long-distange

Ay . behavior of a metastable region, for a system in which a
V7= —\/r sinhe eXp—\/lT, double interface has formed early in the phase ordering, is as
Y Y follows. For an ambient supersaturatioh below the critical
value

Ao

m(sinhqﬂ V1— vy coshp) exp\/%y, (22

A:

\/2 ( 1, 1 b

| . | a.=(ps—pa) \| 27(ps—pc) oo—pn | po—pcl Dy

with 0 ¢< in each case. Graphs df versust/7, with (24)
Ay=1, are plotted in Fig. &), with solid lines fory<1 and

a dashed line fory=1. These solutions are not bound, i.e., there is no asymptotic behavior since the metastable region
A>0 for all positivet and A—x~ ast—o. So, above the collapses in a finite time and subsequent evolution is via the
critical supersaturation, the flux of condensing material, al-ordinaryg-s mode of interface propagation. Above the criti-
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cal supersaturation, the metastable phase grows with time, G’
according to Eq(23). Notice, with reference to Fig.(B),

that pg— pc is a measure of the metastability of the liquid

phase. Hence, at the triple point, when the three wells have a

single common tangent, the critical supersaturation given by é
Eq. (24) goes to zero. In other words, at the triple point, no @)
supersaturation is required to stabilize the liquid phase, so O

the physics is modeled successfully in this respect. 2Q §f
So far, we have concentrated on the siwv®f the meta- m

stable region, but the growth of the solid region is also of (bo
interest. For the double-interface mode of evolution, the size
of the solid region is given, from Eq§l14) and (16), by
PB~PC t dt’
x2<t>=( — )sz —. _ N _
Pbp—Pc 0A(t") FIG. 7. Regions of metastabilitn=pg—pc and adjusted su-

persaturations’ for which interfaces are diffusively bound or un-
Substituting the asymptotic expression fi{Eg. (23)] into  bound.
this formula and using Eq18) for 7 gives the result
gaseous phase, tending to separate them. It characterizes the
y 2\ D, /pB—pC> ( pB—pA> \/f classes of solutions of Eql7), being greater than unity for
2= [ — : diffusively bound solutions and less than unity for unbound
(1+V1=7) ﬁ\pD pe solutions. Finally, we see in Eq25) that it gives an upper
Notice that this isinversely proportional to the(adjusted ~ Pound(and an order of magnitugidor the ratio of growth
supersaturation. It is interesting to compare this with the siz&ates of the solid phase in the split and normal modes of
of a solid region produced by normal interface motige., ~ 9rowth. Sincey<1 when the split mode occurs, E®5)
by a singleg-s interface. To compare like with like, we shows _that this mode of evolutisuppressethe growth of
should use the linearized velocity coefficidfyg. (11), with  the solid.

()_/

pe— pa replaced byps— p, for the interface heigfitogether Note that, in Fig. ), the metastability of the middle
with Eq. (8). Denoting the size of the solid region produced Well leads to the inequalitps>pc . If this liquid well were
by singleinterface motion by, we find stable(i.e., below the double tangent to the outer two wells

the inequality would be violated. Hence it is reasonable to
2 o define the metatability m of the middle well to be
Xsing:\/_—( — )\/Dlt. m=pg—pc. With reference to Eq(24), we see that the
m\Ps™ Py boundary between regions of then(o’) plane, for which

Let ¢ be the ratio of the size of the solid region produced byitheg'I and|-s interfaces are diffusively bound or unbound,

. is of the form shown in Fig. 7. A naive expectation would be
the double-interface mode of growsf to that produced by for a boundary coincident with the vertical axis, but we see
normal growthxgjng. Then

that this is not the casdFor negatives’, for which the

/ B o \Do pa liquid phasemustdissolve into the gas, we find solutions of
(= m P pA) (ps pg>_2 Ps—Pc Eq.(17) are again given by Eq$§20)—(22), but with different
1+1- y\ o’ o /Di1pp—pc ranges of the parametefsand ¢ leading to closed trajecto-

: . o ) ries whenevery>0.]
There is a distinct similarity between this formula and the

expression for y [Eq. (19)]. If we approximate

(pp—pa) T (pe—pc) by ps—pg, Which we see, from Fig.
2(b), is usually a good approximation, then we find Some nonequilibrium effects in colloid-polymer mixtures

have been reviewed in Sec. Il. We have remarked on the

_ Y presence of a well-defined nonequilibrium boundary in the

- 2(1+ \/1T'y) phase diagram, close to the theoretically calculated position

of the hidden gas-liquid metastable binodal. This metastable

Since 0<y<1 for the split-interface mode of growth and binodal is central to the theoretical model developed in Sec.
alsoo' <o, it follows that IV, where the position of its low-density branch was denoted
by pa. A system homogenized by shear melting to an am-

V. DISCUSSION

¢

o'
(o

Y bient density of exactlp, would, in the notation of Sec. IV,
¢ <§ (29 have a vanishing adjusted supersaturatieh=0. In the
model, this value has the special significance thatgfor 0,
and that, well above the critical supersaturatios, y/4. a region of metastable liquid has an initial period of growth,

Let us recapitulate the properties of the parametett before it collapses. At lower densities, any liquid region that
appeared in Eq(17) as an attractive coupling between theis nucleated will immediately shrink. In experimental
g-l andl-s interfaces. It is the ratio of properties of the liquid samples with a colloidal density above the nonequilibrium
phase, tending to attract the interfaces, to properties of thine in the phase diagram, the growth of crystals is
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observed to be suppressed. This happens in the model fozeA(tdeQ, which is given in Eq(23). The remaining life-

o' >o;. time of the metastable regions may be calculated from Egs.
In practice, the linegr’ =0 (the metastable binodahnd  (20), as the time for a region initially of this size to collapse,
o'=0, may be experimentally indistinguishable, for two in a system with adjusted supersaturation of zero. The total

reasons. First, no very accurate theoretical prediction existifetime of the metastable phase is thus of ordgs,/y.
for the position of the metastable binodal in the phase dia¢Compare this with the naive calculation for a semi-infinite
gram. Attempting to make quantitative comparisons of timegaseous region, which gives a suppression of size of the solid
scales with experiment, using the best available theories fategion by a factor of ordey, and hence a time scale factored
the values opa, pg, pc, andpp, results in uncertainties of by 1/y2, rather than 1y.) We note that ifo, is small, then
several hundred percent in the valuejofSecond, the line the lifetime of the metastable phase’(o.)? t4ep JTOWS rap-
o' =0, may be very close to the metastable binodatifis  idly with the ambient density. Once the metastable regions
small. [From Eq.(24), this would occur if, e.g., the middle have collapsed and-s interfaces form, the densities will
well in the potential were only slightly metastable or if the diffusively readjust fronp, andpp to pg andps, in a rela-
diffusion constant were much lower in the liquid than in thetively short time.
gas] If o is small then, writingy=(o./0")? for pg>pc, This whole discussion assumes that all interfaces in the
we see thaty will decrease rapidly with increasing colloidal system are undergoing the split mode of propagatiam,
density and so, from Eq25), suppression of crystal growth with g-I and|-s parts not bound together by curvature, as
will be pronounced at densities not far from the metastableliscussed in Sec. IV and Rdi8]). Any “normal” ( g-s)
binodal. interfaces initiated in the system during nucleation will lead
It seems, then, that the model presented here providests the formation of large crystals on normal diffusive time
plausible theoretical basis for the previous conjecture that thecales. Such crystals are not observed experimentally above
onset of nonequilibrium behavior in certain colloid-polymer the nonequilibrium boundary. Therefore, our model is a good
mixtures is associated with the presence of a hidden gagandidate for the physics of the nonequilibrium boundéry
liquid binodal. It is, however, a greatly simplified and ideal- for some reason, only split interfaces are generated during
ized picture and we should consider the ways in which ithucleation above this boundary. Such a scenario is not un-
deviates from reality, and the implications for the resultantreasonable. We have seen that diffusively bound interfaces
interfacial dynamics. are unbound by a sufficiently large supersaturation. It seems
The model is one dimensional and therefore ignores surikely [8] (and has in fact been observed in a preliminary
face tension. This is justifiable since, once a region hagumerical study9]) that ag-s interface(which is stabilized,
grown considerably larger than the critical nucleus size, surer “bound” by a contribution to the chemical potential of
face tension has a negligible effect on interfacial motion durthe form —V2p) may be split or “unbound” in a manner
ing the growth staggl4]. It is at these intermediate to late analogous to diffusive unbinding and, furthermore, that the
times that our model describes the system. Dimensionality igritical supersaturation to cause this is close in magnitude to
also relevant to the time dependence of the long-range diffuthat calculated here. This conjecture is based on the fact that,
sion. This will have a quantitative effect on the predictedin a model that includes an ext®&p term in the chemical
values of the critical supersaturation and the degree of supotential to describe curvature effedsuch as the Cahn-
pression of crystal growth, etc. but we may conjecture thaHilliard model), the curvature term exactly balances the dif-
the qualitative features of the model's behavior will extendfusive term in an equilibrium interface and hence quantities
to three dimensions. The fact that our one-dimensionatalculated from it will, in the main, be of the same order of

model does not explicitly address intrinsically higher- magnitude as those calculated from the diffusive term only.
dimensional geometric effects, such as the Mullins-Sekerka

instability [16], may not be important. The model gives us LATED SYSTEMS
the general rule of thumb that, above a certain critical super- VI-RE

saturation, the crystalline regiofiwhatever shapes they may  The model we have investigated in this paper was origi-
be), which would normally grow in a two-well system, are pa|ly suggested by experimental observations in mixtures of
replaced, in the presence of a third well, by a metastablgphericalcolloids and nonadsorbing polymers of a substan-
|IQUId Subsequent to this grOWth Stage, the metastable I|qu|qa”y smaller size. The same model may, however, be app“_
is slowly transmuted into the “correct” equilibrium phase, ¢aple to other experimental systems.
i.e., crystal. First of all, it has been pointed out recently by one of us
PrObably a more drastic Simplification is the Semi-inﬁnitethat the hidden binodal is probab|y Signiﬁcant for under-
extent of the ambient gaseous region in the model. In rea"t)’standing the crystallization of globular proteifis7]. The
there iS more than one nucleus Of the Solid phase. There W|u|net|c predictions Of th|s paper may therefore a|So be re'_
be some typical internucleus spacing,. in the system. The eavant in that context.
concentration profile in the gaseous region has a characteris- Fyrthermore, our model is probably directly relevant to
tic length scaleyDyt, so when this is of ordet ., the mixtures of rodlike colloids and nonadsorbing polymers
nuclei begin to influence each other. After this time, the ef{18]. The two possible phase diagram topologies for this sys-
fective asymptotic supersaturation begins to fall, as the retem are again those given in FiggaRand 2b), but with the
gions of depletion of the gas phase around the nuclei begin tlabels gas, liquid, and solid replaced ky I ,, andN (stand-
overlap. This characteristic time to deplete the supersaturang for isotropic phases 1 and 2 and the nematic phase
tion of the gaseous phase may be denatggl (~LﬁuJD1). Once more, three-phase coexistence disappears when the size
At this point, the metastable region around each nucleus is aff the polymer(relative now to the rod lengihdecreases
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Up We can thus speculate on the form of the boundary for
glas%t diffusive unbinding,p=pa(up) + oc(up), in the vicinity of
Hp the gas branch of the metastable bino@&y. 8. The pre-
diction is that, for moderate colloid densities, there should be
a region of suppressed crystallization immediately above the
triple coexistence linédue to the very marginal metastability
of the liquid minimum in the free-energy densitipllowed,
for higheru,,, by normal crystallization behavior and ending
up with crystallization suppression again at the highest val-
ues of u, (due to the vitrification of the metastable liquid
phase. Experimentally, the former nonequilibrium region
p has not been observétil]. A search for this phenomenon is
under way in our laboratory. However, the region of normal
FIG. 8. Phase diagram in Fig(a redrawn schematically to crystallization has been reported, as has a nonequilibrium
emphasize the portion above the triple coexistence IingaHere, boundary at higher, [11], where it has been sugges{@d]
within the equilibrium gas plus solid coexistence region, the metathat vitrification of a dense phase does play a crucial role.
stable gas-liquid binodal is the dotted lings=pa(x,) and We speculate that the theoretical results contained in this
p=pa(up). The bold curves indicate the likely positions of parts of haper should have some relevance to a number of other com-
the diffusive unbinding boundany=pa+ oe(up). Near the triple  plex fluid systems in which metastability is known to play a

coexistence line, the boundary meets the gas branch of the metgay (e in"phase transformations, including the crystalliza-
stable binodal because the liquid well in the free-energy density iSion of the “monotropic liquid crystal,” polya-nonyl-

i glass i _ . . 3 ]
only marginally metastable. At;=>, the liquid branch of the meta 4-4'-biphenyl-2-chloroethane, via an intermediate, meta-

stable binodal reaches the vitrification dengity,ss. In this vicin- ;\table nematic phag@1] and the crystallization of polphe-

ity, the critical supersaturation curve is again close to the gas branc lene ether in cyclohexanol, where dee enches oro-
of the metastable binodal, now because of the vanishing diffusioh In ¢y X » W P qu P

constant in the liquid phas8lC indicates regions where we expect duces first a fluid-fluid phasfe. sgparatlo[rQZ]. We .
disruption of crystallization, while normal gas-crystal coexistence isaCknOWIedge’ however, that the limitations of our model dis-

expected in the hatched area. cussed in Sec. V, together with the likelihood that latent heat
may not be negligible in at least some instances, necessitates
further research before reaching firm conclusions on its ap-
g)licability.

i/P=l%(Hp) i?glass
: P=pybtp)]
p=pta(ip) |
9
=t (p) |

below a critical value. In this cageompare Fig. @)], the
addition of sufficient polymer to a suspension of rods lead
to slow phase separation into an isotropic and a denser, co-
existing nematic phase, the latter being distinguished by
strong birefringence. Further addition of polymers, however, Vil. CONCLUSION
bringS about a different kind of behavior: A Weakly birefrin- We have studied a Simp|e model for diffusion-limited ki-
gent, “expanded” phase, which contains most of the rodlikenetics of phase ordering in a system whose free-energy den-
particles, separates out quiclg9]. It has been suggested sjty has a metastable third well, at a density intermediate to
[19] that the suppression of isotropic-nematic phase separghe two equilibrium phases. In such systems, we have found
tion is due to the presence of a hidden isotropic-isotropica mechanism whereby a region of the metastable phase may
binodal. grow ad infinitumat the expense of the equilibrium dense
Let us return to spherical colloid and polymer mixtures. Inphase if the mean density of the system is above a critical
the previous sections, we have concentrated on polymekhreshold. This behavior appears to be consistent with the
colloid size ratios{ sufficiently small for no liquid phase to nonequilibrium ordering dynamics and suppression of crystal
appear in the equilibrium phase diagrdfig. 1(b)]. Now  growth observed experimentally in colloid-polymer mix-
consider the case where the polymer is large enough to givres. In the experimental system, as in the theoretical model,
rise to a thermodynamically stable gas-liquid binodal, as apthe onset of anomalous behavior occurs at a well-defined
pears in Fig. (). Note that, in the “gast solid” region of  density.
Fig. 1(a), the form of f(p) is as sketched in Fig.(8) and The important lesson of this studgnd the preceding pa-
hence the model set up in this paper is again relevant. Aper [8]) is that any pair of concentrations, which can be
expanded version of the phase diagram near the triple linginked by a double tangent on the graph of free-energy den-
now showing the metastable portions of the gas-liquid binsity versus concentration, may give rise to an interface in the
odal, is sketched in Fig. 8. As the triple line is approachedeyolving system. Although only the globally stable binodal
from above 1— u;), where the liquid well is only just densities will coexist in the equilibrated system, local and
metastable, the critical supersaturation vanislees{0) be-  transient coexistence can occur betwaay binodal pairs of
causepg— pc—0; see Fig. &) and Eq.(24). At higher val-  densities in a system that has not yet discovered its global
ues ofu,, we expect another regime wharg—0, this time  equilibrium state. Hence metastable phases cannot be over-
due to the vanishing of the diffusion coefficient in the liquid looked when modeling phase ordering. Indeed, their impor-
phaseD, [see Eq(24)]. As u, increases, the density of the tance has long been accepted on an empirical level, particu-
metastable liquid phasepg also increases; eventually larly in a metallurgical context23,13. Ostwald’s “rule of
pPe— Pglass the density at which the system vitrifies, with stages,” for exampleg24], asserts that the transformation
D,—0. from one stable phase to another proceeds via all metastable
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w@— (@%4)(1+v?)

intermediates in turn. We have, in the present paper, a ratio- w@—a%%l4 ,

nale for the consideration of such phases in a soft condensed |1zzj >-dv=2¢€" ’4f —— —dv.

matter setting. 1 1+v 1 1tw
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d 2 2
—a2/ay _ —a?4
da(lle af=—al,e @",

Hencel ; is given by the indefinite integral
APPENDIX A: EVALUATION OF INTEGRALS

Dividing Eq. (6) by Eqg. (7) and using the appropriate
functional forms forx,(t) and s(t), and the substitution
t’=u?t to eliminate dimensionality from the integrands, we

find the relation between the velocity coefficient and the relawh nstant of intearation i t by notind thatvan
tive supersaturation/(pg—pa) =11/1, where ose constant of integration is set by noting thavan-

ishes asa— . This integral is soluble by parts, using

2 .2 a
|,=—Jme? ’4f e 2/ erfc da,

| 1 du a’(1+u)
1=y 0 O a0y e
ovl-u (1-u) J erfc x dx=x erfc x— + const.
J
fl du a’(1+u)
= ex :
> Jo(1—uyyi=1? P a1 The solution is
Making a further change of variablas’=(1+u)/(1—u) 2
yields | =T e erfc2
172 2]
* T a
l,= f e avig, — £ erfc =, _
1 a 2 from which Eq.(9) follows.
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