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Diffusive evolution of stable and metastable phases. II. Theory of nonequilibrium behavior
in colloid-polymer mixtures

R. M. L. Evans* and W. C. K. Poon†

Department of Physics and Astronomy, The University of Edinburgh, JCMB King’s Buildings, Mayfield Road,
Edinburgh EH9 3JZ, United Kingdom

~Received 7 April 1997!

By analytically solving some simple models of phase-ordering kinetics, we suggest a mechanism for the
onset of nonequilibrium behavior in colloid-polymer mixtures. These mixtures can function as models of
atomic systems; their physics therefore impinges on many areas of thermodynamics and phase ordering. An
exact solution is found for the motion of a single, planar interface separating a growing phase of uniform high
density from a supersaturated low-density phase, whose diffusive depletion drives the interfacial motion. In
addition, an approximate solution is found for the one-dimensional evolution of two interfaces, separated by a
slab of a metastable phase at intermediate density. The theory predicts a critical supersaturation of the low-
density phase, above which the two interfaces become unbound and the metastable phase growsad infinitum.
The growth of the stable phase is suppressed in this regime.@S1063-651X~97!03311-4#

PACS number~s!: 82.70.Dd, 64.60.My, 05.70.Ln
se

d
em
ize

i

en
oo

in

ng
e
ly
ls

s

a

-

in
w

el
tio
n-
tu

e

ex-
ound

se
on-
y of
e
om
a
ib-
ble
re-

tion
ima
um
ca-
r

the

les
the

en-
tal
s

er
I. INTRODUCTION

Metastability and phase transition kinetics in conden
matter are rapidly expanding fields of research@1,2#. Experi-
mentally, it is increasingly realized thatcolloidal systems
exhibit unique properties which make them attractive can
dates for studying these topics. Advances in synthetic ch
istry mean that suspensions of particles of well-character
shapes and sizes, and with precisely tunable interparticle
teractions, can be routinely produced. Theequilibriumphase
behavior of such model colloids can be studied experim
tally and understood in some detail using the standard t
of statistical mechanics@3#. Moreover, colloids are much
larger than atoms, the typical dimension of a colloid be
L'0.5 mm, and the solids they form~crystal, glass, and gel!
are mechanically weak, a typical modulus bei
G;kBT/L3'1022 N m22. Thus a colloidal crystal can b
‘‘shear melted’’ to the metastable colloidal fluid state simp
by shaking. Structural dynamics of colloidal systems are a
slow, the scale being set by the time a free particle take
diffuse its own dimension,tR;L2/D. Estimating the diffu-
sion coefficient D by the Stokes-Einstein relation for
spherical particle of radiusL;0.5 mm suspended in a
liquid of viscosity h;1023 N m22 s, we get
D5kBT/6phL;4310213 m2 s21, so that the characteris
tic relaxation time in colloidal systems istR*1 s. Thus the
crystallization of a metastable colloidal fluid can take m
utes, hours, or even days. These two features, the ease
which metastable states can be prepared and the long r
ation times involved, mean that the study of phase transi
kinetics and metastability in model colloids is gaining i
creasing attention. For example, there is a growing litera
on crystallization kinetics in nearly-hard-sphere poly~methyl
methacrylate! colloids @4#. The glass transition in the sam
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system is now recognized as being one of the simplest
amples of that phenomenon and has become a testing gr
for sophisticated theories@5#.

In recent work aimed at elucidating the equilibrium pha
behavior of mixtures of nearly-hard-sphere colloids and n
adsorbing polymers, we have also observed a rich variet
nonequilibrium behavior@6,7#. The well-characterized natur
of our experimental system, coupled with detailed data fr
small-angle light scattering@7#, has allowed us to suggest
possible link between the onset of formation of nonequil
rium phases and the presence of a ‘‘hidden,’’ metasta
minimum in the free-energy landscape. In this paper, we
view the experimental evidence leading to this sugges
and model the kinetic consequences of such a three-min
free-energy landscape in one dimension using a continu
approach. We conclude by pointing to the possible appli
tions of this model in other ‘‘soft’’ systems. Some of ou
work relies on results from the preceding paper@8#; the main
ideas are summarized in@9#.

II. NONEQUILIBRIUM BEHAVIOR IN COLLOID-
POLYMER MIXTURES

Free polymer alters the phase behavior of colloids via
depletion mechanism@10#. Exclusion of polymer from the
region between the surfaces of two nearby colloidal partic
gives rise to an unbalanced osmotic pressure pushing
particles together, resulting in an attractive depletion pot
tial Udep. In the case of hard-sphere-like colloids, the to
interparticle interaction@11# in the presence of polymers i
given approximately by

U~r !5H 1` for r<s

2Pp~mp!Voverlap5Udep for s,r<s12r g

0 for r .s12r g ,
~1!

where s52a is the particle diameter andPp(mp) is the
osmotic pressure of the polymer as a function of the polym
5748 © 1997 The American Physical Society
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56 5749DIFFUSIVE EVOLUTION OF . . . . II. . . .
chemical potentialmp . Voverlap is the volume of the overlap
ping depletion zones between two particles at an interce
separation ofr . Explicitly

Voverlap5H 12
3r

2s~11j!
1

1

2F r

s~11j!G
3J p

6
s3~11j!3,

~2!

wherej5r g /a denotes the ratio of the radius of gyration
the polymerr g to the radius of the colloidal particlea.

Theory @10# predicts and experiments@11# show that the
phase diagram of a mixture of hard-sphere colloids and n
adsorbing polymer is a function of the size ratioj. The phase
diagram at large enoughj is reminiscent of that of a simple
atomic substance@Fig. 1~a!#, with the polymer chemical po
tential (mp) playing the role of an inverse temperatur
~Temperature itself is not an axis of the phase diagram
cause, in systems with only excluded-volume interactions
energy scale exists@12#.! Colloidal gas, liquid, and crysta
phases are possible, with regions of binary coexistence
tween pairs of these phases and triple coexistence at a
ticular value ofmp . As the size ratioj is decreased, the
region of colloidal gas-liquid coexistence shrinks until, b
low a critical valuejcrit , the gas-liquid coexistence regio
disappears altogether from the equilibrium phase diag
@Fig. 1~b!#; now, only colloidal fluid or crystal phases exi
in equilibrium. Experimentally,jcrit'0.25.

Focus now on the phase diagram for the case ofj,jcrit
@Fig. 1~b!#. Experiments confirm that moderate concent
tions of a small nonadsorbing polymer cause a suspensio
hard spheres to phase separate into coexisting colloidal
and crystal phases. At higher colloidal concentrations,
highermp , across anonequilibrium boundary~NEB!, crys-
tallization is suppressed@6#, @7#. Instead, a variety of non
equilibrium aggregation behaviors is observed. Detai
small-angle light-scattering studies@7# have allowed the clas
sification of the kinetic behavior above the NEB into thr
types. Just across the NEB, the behavior is ‘‘nucleati
like.’’ This is characterized by an initial latency period co
sistent with nucleation, after which dense, amorphous dr
lets separate out, forming an amorphous sediment that be
to crystallize only on a much longer time scale. The nuc
ationlike regime is of primary interest to us in this article.

FIG. 1. Phase diagrams of colloid-polymer mixtures in the c
loid concentration (r) –polymer chemical potential (mp) plane, for
size ratioj ~a! above and~b! below jcrit . The dotted curve is a
‘‘hidden’’ gas-liquid binodal. For~b!, the free-energy plots for two
polymer chemical potentials,mp

low andmp
high, are shown in Figs. 2~a!

and 2~b!, respectively. The values ofr for the various boundaries a
m5mp

high are given by the common tangent construction in F
2~b!.
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highermp , or higher colloid concentration, the behavior b
comes ‘‘spinodal-like,’’ switching finally to a ‘‘transient ge
lation’’ regime for the densest systems.

It should be stressed that the experimentally obser
NEB is sharp and highly reproducible. In fact, it has be
suggested by one of us@7# that this boundary is given by a
hidden gas-liquid binodal. Following the theoretical a
proach in @10#, we write the free energyF(r,mp) of a
colloid-polymer mixture as a function of the colloid volum
fraction~or ‘‘density’’ ! r and the polymer chemical potentia
mp . F can be calculated within a mean-field framework fo
disordered arrangement of colloids and polymers, the ‘‘flu
branch,’’ and an ordered arrangement of colloids with po
mers randomly dispersed, the ‘‘crystal branch.’’ At lo
polymer chemical potentials, the fluid and crystal branch
both show a single minimum@Fig. 2~a!#. This gives rise to
single-phase fluid (r,rg), fluid-crystal coexistence
(rg,r,rs), or single-phase crystal (r.rs). The colloid
concentrations in coexisting fluid and crystal phases are
tained by the common tangent construction~see, e.g.,@13#!.

At higher polymer chemical potentials, however, the flu
branch of the free energy shows a ‘‘double minimum’’ stru
ture @Fig. 2~b!#. At larger polymer to colloid size ratios, thi
double minimum can give rise to a region of colloidal ga
liquid coexistence in the equilibrium phase diagram@Fig.
1~a!# @10,11#. For small polymers, however, the theory pr
dicts only separation into fluid and crystal phases. Nevert
less, the ‘‘metastable gas-liquid binodal,’’ which is ‘‘buried
within the fluid-crystal coexistence region predicted by eq
librium thermodynamics, can still be traced out@Fig. 1~b!#.
The equilibrium phase boundary and the metastable g
liquid binodal, calculated using the theory in@10#, compare
well with the experimental equilibrium fluid-crystal coexis
ence boundary and the nonequilibrium boundary respectiv
@7#, giving rise to the speculation that the suppression
crystallization, which is the predicted, equilibrium phase b
havior, is linked to the presence of the hidden gas-liq
binodal.

In this and the preceding paper@8#, we provide a theoret-
ical basis for this speculation. We model the effects o
metastable third minimum in the free-companion ene
curve on the kinetics of phase ordering, focusing on po
nucleation kinetics. A system that has been homogeni
~e.g., by shear melting! to some uniform density betweenrg

-

.

FIG. 2. Fluid and crystal branches of the free-energy den
versus colloid volume fraction~a! at low polymer chemical poten
tial @e.g., mp

low in Fig. 1~b!#, when the fluid branch has a singl
minimum, and~b! at higher polymer chemical potential@e.g.,mp

high

in Fig. 1~b!#, when two minima exist in the fluid branch, corre
sponding to gas and metastable liquid phases. The common tan
construction is used to find the densities of the coexisting equ
rium gas and solid phases (rg ,rs), and the metastable gas-liqui
and liquid-solid binodals (rA ,rB) and (rC ,rD); see Fig. 1~b!.
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5750 56R. M. L. EVANS AND W. C. K. POON
and rs ~see Fig. 2! must evolve towards the equilibrium
state, by separating into regions of densityrg andrs . If f (r)
has positive curvature at the initial density, then the evo
tion begins by nucleation, whereby a thermal fluctuat
causes part of the system to cross the barrier between the
stable wells inf . Once such a nucleus has formed~in the
early stage of phase ordering!, it grows by diffusively deplet-
ing the surrounding, supersaturated medium~the growth
stage@14#!.

In the preceding paper@8#, we consider the implications
for short-range~on the length scale of the transition zon
between neighboring phases! density variations and stability
in the context of quasi-steady-state motion. There, and
Ref. @9#, it is shown that an interface between regions
different densities may split, in the presence of a metasta
minimum, into two parts. The purpose of the present art
is to model the evolution of a split interface during th
growth stage, considering large length scales~so interfaces
appear as sharp steps, and relatively gentle concentra
gradients control the diffusive dynamics! and time scales~so
motion is time dependent, not steady state!. We will find that
growth dynamics involving split interfaces contrasts grea
with normal growth behavior.

The plan of this paper is as follows. The model introduc
in Sec. III, involving a nucleus with an ordinary, unsp
interface, sets the scene for the methods employed. It
completely soluble model for the motion of a single doma
wall. The result agrees with that of Frank@15#. In Sec. IV,
we analyze a more elaborate scenario, where two dom
walls ~the two parts of a ‘‘split’’ interface! enclose a region
of metastable density and compete for the flux of condens
material. This model exhibits behavior consistent with t
non-equilibrium boundary in the colloid-polymer phase d
gram. The limitations of our work are discussed in Sec.
while applications to related systems are given in Sec. V

In the models presented, growth is limited by diffusion
matter only. This simplification holds in many soft co
densed systems, for which diffusion of latent heat is irr
evant since the entropy is dominated by the degrees of f
dom of the solvent@12#. Moreover, we assume that th
system may be described by asingleconserved order param
eter~such as the density of colloidal particles!. Formally, this
does not apply in colloid-polymer mixtures, where the po
mer concentration is a second conserved quantity. Howe
it should be a reasonable model for smallj, such that the
polymers diffuse much more rapidly than the colloids. No
conserved order parameters describing crystallinity are
omitted, under the assumption that such variables re
quickly compared with the diffusive order parameter and
therefore not rate limiting.

III. EXACT SOLUTION OF THE DIFFUSION EQUATION
FOR TWO-PHASE SEPARATION

In this section, we find an exact solution of a proble
pertinent to the intermediate- to late-stage evolution o
two-phase system. It is well known@14# that, when a dense
droplet grows into a surrounding, supersaturated medi
the speed of motion of the interface is proportional tot21/2.
We solve an idealized one-dimensional model for the mot
of a single interface in such a situation and find the cons
-
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of proportionality as a function of the supersaturation of t
ambient medium. This problem was solved, using a differ
approach, by Frank@15#. Our solution by an alternative
method is presented both for completeness and to introd
notation. The results obtained in this section will be used
Sec. IV to investigate the effect on interfacial motion of
‘‘metastable minimum’’ in the free-energy landscape.

A. Idealized model

Consider an infinite, one-dimensional system whose eq
librium state is two-phase coexistence, which has been
mogenized to a uniform density~e.g., by shear melting!. In
the system, a region of the high-density phase has nucle
at its equilibrium density and the interface between the hi
and low-density phases has locally equilibrated. The dom
wall proceeds to move by depleting the supersaturated l
density phase. Let the interface be located atx5x1(t) and let
the density of the high-density phase be uniform atr5rs .
So the evolution of the system is solely due to the dynam
of the low-density region. In this phase, the density isrg at
the interface (x5x1) and tends asymptotically to the supe
saturated valuerg1s as x→`. The assumption that the
density ~and hence chemical potential! is fixed at the equi-
librium value @given by the double-tangent construction
Fig. 2~a!# at the interface is physically valid if the interfac
moves sufficiently slowly@8#. The problem of findingx1(t)
is that of solving the diffusion equation

]r

]t
5D

]2r

]x2
,

with boundary conditionsr(`,t)5rg1s and

r~x1 ,t !5rg , ~3!

with a moving boundary atx1(t), whose velocity depends o
the flux at that point since, by conservation of matter at
interface,

~rs2rg! ẋ15Dr8~x1!. ~4!

The initial conditions arex150 andr(x.x1)5rg1s, with
a singularity atx5x1 ~see the inset in Fig. 3! sincer(x1)
5rg; t. The system is depicted, at some later timet, in Fig.
3.

B. Solution

Solving the diffusion equation with a moving boundary~a
Stefan problem! is difficult. The problem is overcome by
replacing the semi-infinite region in which the diffusio
equation is to be applied, by an infinite region, with a sou
or sink at x1, whose strengths(t) is such that the region
x.x1 cannot distinguish it from a moving interface. Th
behavior inx,x1, which is just a construct of the method
should simply be ignored. The initial conditions in this r
gion may be freely chosen to facilitate the solution. L
r„xÞx1(0) ,t50…5rg1s and lety be defined as the devia
tion from this ambient density:y5r2rg2s. So the equa-
tion to be solved is the diffusion equation with a source
x5x1(t),
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]y

]t
5D

]2y

]x2
2d„x2x1~ t !… s~ t !, ~5!

with the wall positionx1(t) and the constructs(t) fixed by
the boundary conditions. Equation~5! is solved by

y~x,t !52E
0

t

dt8E
2`

`

dx8 G~x2x8,t2t8!

3d„x82x1~ t8!…s~ t8!

using the Green’s function

G~x,t !5
1

A4pDt
expS 2x2

4Dt D .

Hence the density field is given in terms ofs(t) andx1(t) by

r~x,t !5rg1s2E
0

t

dt8
s~ t8!

A4pD~ t2t8!
exp2

@x2x1~ t8!#2

4D~ t2t8!
.

Applying Eqs.~3! and~4! gives us two integral equations i
the two unknown functionsx1(t) ands(t), valid for all posi-
tive t:

E
0

t

dt8
s~ t8!

A4D~ t2t8!
exp2

@x1~ t !2x1~ t8!#2

4D~ t2t8!
5p1/2, ~6!

E
0

t

dt8
@x1~ t !2x1~ t8!# s~ t8!

@4D~ t2t8!#3/2
exp2

@x1~ t !2x1~ t8!#2

4D~ t2t8!

5
p1/2~rs2rg!

2D
ẋ1~ t !. ~7!

FIG. 3. Graph of densityr against positionx. On the left is the
dense region that has been nucleated and is growing at the un
densityrs , which is its equilibrium density. The interface is locate
at x5x1, which is a function of time, since matter is flowing dow
the concentration gradient in the sparse phase and condensing
the high-density region. At the base of the interface, the densit
that of the coexisting gasrg . The ‘‘ambient’’ density far from the
interface isrg1s. Inset: the initial (t50) configuration of the sys-
tem, with a singularity at the base of the domain wall.
The right-hand side of Eq.~6! is independent oft, and hence
the t dependence must be removed from the exponentia
the integrand. This requires

x1~ t !5aADt ~8!

and hences(t)5bA(D/t), wherea and b are constants in
time. Substituting into Eqs.~6! and ~7! and evaluating the
integrals~see the Appendix! results in a closed-form expres
sion relating the coefficienta to the relative supersaturation

s

rs2rg
5

Ap

2
aea2/4erfc

a

2
~9!

where erfc is the complementary error function, e
x[12 erf x. The coefficientb is not of particular interest,
but we note that it is of the form (rs2rg)3 @function of
s/(rs2rg)].

We have chosen to use the initial conditionx1(0)50 in
deriving Eq.~8!, but clearly the origin ofx1 is arbitrary since
the physics is translation invariant and does not depend
the initial size of the dense region. The velocity of the inte
face, on the other hand, is well defined:

ẋ15
a

2
AD

t
. ~10!

Equation~10! lends a physical meaning to the coefficienta
and so we will refer to it as the ‘‘velocity coefficient.’’

Equation~9! is plotted in Fig. 4 fora as a function of
s/(rs2rg). The validity of the model extends to negativ
supersaturations, which result in evaporation of the de
phase and hence negativea. The curve plotted in Fig. 4 ha
no special features in the negative quadrant. As the rela
supersaturation tends to negative infinity, the behavior of
velocity coefficient is given by

a→22A lnS 2s

rs2rg
D .

rm

nto
is

FIG. 4. Velocity coefficient versus relative supersaturation
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5752 56R. M. L. EVANS AND W. C. K. POON
C. Linear and nonlinear regimes

For small relative supersaturation~close to the origin of
Fig. 4!, Eq. ~9! tends to a linear relation

a→
2

Ap
S s

rs2rg
D . ~11!

From Eq. ~4! we see that the fluxonto the interface is
j cond5(rs2rg) ẋ1. If we substitute Eqs.~10! and ~11! into
this expression, we see that the flux of material from
dilute phase condensing onto the interface is

j cond→sAD/pt ~12!

in the linear regime. This is independent ofrs2rg and de-
pends only on properties of the dilute phase. So the cond
sation flux becomes independent of properties of the in
face in this regime. The physics behind this statement is
follows. The density at the base of the interface is maintai
at the constant valuerg and this gives rise to a gradient, an
hence a flux, in the supersaturated dilute region. This gr
ent diminishes with time as material is depleted from
region, but is enhanced by the motion of the wall. It is cle
from Fig. 3 that moving the wall to the right must accentua
the gradient. In the linear regime, the motion of the wall
slow enough for this enhancement of the gradient to be
significant, and the flux onto the interface varies with time
if the boundary to the diffusive region were fixed. In Fig.
we see that the model gives rise to a divergence~albeit un-
physical! of the velocity coefficient at a relative supersatu
tion of unity. The reason for this is now clear. At this supe
saturation, the nonlinearity described above, whereby
interface motion enhances the gradient, becomes extre
The interface can never deplete the ‘‘low’’-density regi
and hence the gradient~and therefore the flux! at its base
remains infinite. Based on the exact solution of this sim
model for interface motion@specifically Eq.~12!#, we pro-
ceed to study a more elaborate situation.

IV. METASTABLE PHASE EVOLUTION BETWEEN TWO
COMPETING INTERFACES

It was noted in Sec. II that the onset of nonequilibriu
behavior in colloid-polymer mixtures seems to be connec
with the appearance of a third minimum in the free-ene
density, corresponding to a metastable liquid phase. Spe
cally, the formation of amorphous, nonequilibrium mater
from nucleationlike dynamics begins to occur at a supers
ration of the gas phase close to the hidden gas-liquid bino
We now develop a model for the phase-ordering dynamic
systems with a third minimum of this kind.

In a system with such a three-well potential@such as that
illustrated in Fig. 2~b!#, three different species of interface
may exist between regions of the various locally stable d
sities, during intermediate- to late-stage ordering. If the g
metastable liquid, and solid phases are denotedg,l , and s,
respectively, theng-l , l -s, and g-s interfaces may move
through the system. If we use the ‘‘equilibrium interface
approximation, as applied in Sec. III, defining the densit
above and below each interface to be the coexistence va
for equilibrium between the two neighboring phases, the
e
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g-s interface has the fixed densities (rg ,rs), given by the
double-tangent construction@13# in Fig. 2~b!. Accordingly,
at a g-l interface the densities are (rA ,rB) and at anl -s
interface, (rC ,rD), which are the metastable coexisting va
ues given in Fig. 2~b!.

Consider the idealized system introduced in Sec.
where a region of the dense solid has appeared in an o
wise homogeneous, supersaturated system. The ambient
sity is within the gas well of the bulk free-energy density. A
before, the dense region will grow by depleting the sup
saturated dilute region, but we can now imagine two alter
tive ways in which the growth can proceed.Either a g-s
interface propagates into the dilute phase, and the sys
evolves as in Sec. III,or g-l and l -s interfaces form, and
propagate separately, their motion being controlled by dif
sion both in the ambient dilute region and in the interven
region of metastable liquid. Once formed, ag-s interface
propagates stably with respect to small perturbations@8# and
cannot easily be split intog-l and l -s parts. Hence, which of
these two modes of growth the system exhibits depends
which was initiated at the nucleation stage. The criteria
which mode is initiated during nucleation in a given syste
are unknown at present, although there has been some
jecture@8,9#. Let us accept that the split-interface (g-l andl -
s) mode of evolution has begun in our one-dimensional s
tem and calculate the subsequent growth dynamics.

A. Model system

The density profile of the system in question, at so
time t, is depicted in Fig. 5. Theg-l interface is positioned a
x1(t) and the constant densitiesrA andrB immediately ad-
jacent to it are marked, as are the fluxesj A(t) and j B(t) in
and out of the interface, which are defined in the direction
the arrows and are functions of time. Thel -s interface is at

FIG. 5. Graph of densityr against positionx. The interface at
x1 separates the gas phase from the metastable liquid and is lo
equilibrated so that the discontinuity in the density is between
metastable binodal values (rA ,rB). The flux into~out of! the inter-
face is j A ( j B). The flux j C of material of densityrC impinges on
the interface atx2, which separates the metastable liquid from t
solid region of uniform densityrD . The ambient~i.e., asymptotic!
density of the gaseous phase is the supersaturated valuerA1s8.
Inset: the initial configuration of the system, with a uniform grad
ent between the domain walls and ad-function singularity in the
gas phase atx1.
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x2(t). The flux of material of densityrC into this interface is
j C(t). There is no output flux, as the solid phase has a u
form density rD . Let us make the model as general a
physically realistic as possible by allowing different diffu
sion constants in the different phases:D1 in the gaseous
phase andD2 in the metastable liquid. The supersaturat
density at infinity is defined asrA1s8 in the figure. The
‘‘adjusted supersaturation’’s8 is distinct from the supersatu
rations used in Sec. III. If the ambient~asymptotic! density
is r` then the supersaturation is the deviation of this den
from the equilibrium value~the stablebinodal!, which isrg
in this system, i.e.,s5r`2rg . On the other hand, thead-
justed supersaturation is the deviation from the metasta
binodal,s85r`2rA .

Clearly, conservation of matter at the interfaces leads
the equations

~rB2rA!ẋ15 j A2 j B , ~13!

~rD2rC!ẋ25 j C . ~14!

Using these relations, we could proceed in the same ma
as in Sec. III B, but this time solving two coupled diffusio
equations. The diffusion equation for the gaseous reg
would have one source and that for the liquid region wo
have two. The strengths and positions of the sources wo
be fixed by Eqs.~13! and ~14! and by fixing the constan
densitiesrA , rB , andrC . Equation~13! would couple the
two equations. Proceeding in this manner to try to find
exact solution for the evolution of the system would lead
five coupled integro-differential equations in five unknow
functions@x1(t), x2(t), and the strengths of three sources#. It
is not easy to spot the solutions to this system of equatio
as it was for Eqs.~6! and~7!. Instead, we will make progres
by introducing some physically reasonable approximation

B. Approximations

The first approximation is to decouple theg-l interface
from the gaseous driving region by using Eq.~12! for the
input current:

j A's8AD1 /pt. ~15!

This becomes exact ass8→0 and will presumably give
qualitatively meaningful results at higher supersaturatio
although withs8 becoming someeffectivesupersaturation
deviating from the true value. We uses8 rather thans in Eq.
~15!, as the boundary conditionr(x1)2rA50 was used in
its derivation.

As a second approximation let

j B' j C'D2

rB2rC

x12x2
, ~16!

which says that the gradient in the liquid region is appro
mately uniform. Intuitively, this seems to be a reasona
assumption. If we imagine that, at some time into the evo
tion, the positions of the interfaces could suddenly be froz
then the liquid region would subsequently relax expon
tially towards a uniform gradient.~Compare the related dif
fusion problem of the temperature profile in a conducting
i-
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with the ends held at different temperatures.! In this sense,
the liquid region is constantly in a state of relaxation towa
a uniform density gradient, for which Eq.~16! applies.

Let us defineD to be the size of the metastable liqu
region: D[x12x2. Then substituting Eqs.~15! and ~16! in
Eqs.~13! and ~14! gives us the differential equation

dD

d~ t/t!
5~ t/t!21/22

g

2D
, ~17!

with a constant

t[
p

D1
S rB2rA

s8
D 2

~18!

which has units of~time!/~length! 2, and a dimensionless con
stant g, which acts as an attractive coupling between
walls, given by

g[2pS rB2rA

s8
D 2

D2

D1
~rB2rC!S 1

rB2rA
1

1

rD2rC
D .

~19!

The formula forg is quite easy to understand. It is a ratio
quantities that drive the interfaces together~relating to diffu-
sion in the metastable phase! to those that drive them apa
~relating to the gaseous region!. It is proportional to the ratio
of the diffusion constants and to the difference in densit
(rB2rC) that drives flux through the liquid region. Thi
difference is made dimensionless by the factor following
which is dominated by the interface of smallest height. Th
quantities are divided by the square of the relative supers
ration, which is responsible for driving theg-l wall away
from the l -s wall.

C. Solution

In Eq. ~17!, g has a critical value of unity, above whic
the solution may be expressed parametrically as

At/t5
D0

Ag21
sinu exp

u

Ag21
,

D5
D0

Ag21
~sinu1Ag21 cosu! exp

u

Ag21
~20!

for values of the parameter u in the range
0<u<p2arctanAg21. HereD0 is the initial size of the
metastable region. A critical value ofg implies @from Eq.
~19!# a critical valuesc of the adjusted supersaturation. Th
conditiong.1 corresponds tos8,sc . We see that a graph
of D versusAt is an affine deformation of a logarithmi
spiral and the restricted domain ofu gives a branch thereo
in the first quadrant. Hence the metastable region has a fi
lifetime sinceD decays to zero at some positive value oft.
We will refer to these solutions as ‘‘diffusively bound,’’ to
distinguish from the tighter binding due to curvature ener
in the Cahn-Hilliard model, which prevents a singleg-s in-
terface splitting intog-l andl -s parts@8#. Furthermore, there
is no solution forD050. Hence, fors8,sc , the flux of
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FIG. 6. ~a! Size of the metastable regionD @as given in Eqs.~20!–~22!# against timet in units of the constantt, for various values of
the coupling constantg. Diffusively bound solutions are marked with a dotted line, forg53, g52, andg51.8. The marginal solution
(g51) is dashed, and unbound solutions are plotted with solid lines, forg50.8 and 0.1. In each case, the initial size of the metastable re
D0 is unity. ~b! Same plots, produced by numerical solution, without the approximations~15! and~16!. The same values ofg are used as in
~a!.
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condensation cannot, even momentarily, separate theg-l
from the l -s wall if they are initially together. The diffu-
sively bound solutions forD as a function oft/t are plotted
with dotted lines in Fig. 6~a! for various values ofg, with
D051. Notice that the gradients of the curves are infin
where they meet each axis. The infinite gradient att50
arises from the infinite flux of condensing material due to
singularity in the density at the base of theg-l interface. At
D50, the metastable region decays infinitely fast since
density gradient (rB2rC)/D diverges. Of course, in a phys
cal situation, the gradient ofD(t) would be flattened in both
instances since the densities (rA ,rB) do not truly remain
constant for a fast-moving interface. Once the interfac
separation collapses to zero, the model breaks down. In a
system, the interfaces would combine into a single, sta
g-s interface, which would continue to advance.

At the critical valueg51, Eq. ~17! has the parametric
solution

At/t5D0~f11! expf,

D5D0f expf, ~21!

and for g,1 ~i.e., above the critical supersaturation!, the
solution is

At/t5
D0

A12g
sinhf exp

f

A12g
,

D5
D0

A12g
~sinhf1A12g coshf! exp

f

A12g
, ~22!

with 0<f,` in each case. Graphs ofD versust/t, with
D051, are plotted in Fig. 6~a!, with solid lines forg,1 and
a dashed line forg51. These solutions are not bound, i.e
D.0 for all positive t and D→` as t→`. So, above the
critical supersaturation, the flux of condensing material,
e

e

l
eal
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,
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though always dwindling, is sufficient to separate theg-l
from thel -s interface, causing the metastable liquid phase
grow ad infinitum. This is even true in the extreme cas
whereD050, when the solution becomes

D5~11A12g !At/t for g>1. ~23!

Equation~23! is also the limit of Eq.~22! as t→`, so the
size of the metastable region at late times is independen
its initial value.

To check the validity of Eqs.~15! and ~16!, we have nu-
merically solved the system described in Sec. IV A~without
the approximations made in Sec. IV B!. The results plotted
in Fig. 6~b! are for D2 /D150.1. The variation ofg was
controlled by varyings8 only. These results compare we
with the approximate, closed-form solutions in Fig. 6~a!. The
same qualitative features~open or closed trajectories! appear
and the critical value ofg is close to unity. The lifetimes of
the bound solutions~which are very sensitive to the syste
parameters! agree to within a few percent for systems not t
close to criticality. For the topmost trajectory in Fig. 6~b!,
s8/(rB2rA)'50% so some deviation from linearity@Eq.
~15!# is to be expected~see Sec. III C!. We conclude that
Eqs.~15! and~16! are quantitatively reasonable, and qualit
tively very good, approximations.

In summary, the asymptotic~late-time or long-distance!
behavior of a metastable region, for a system in which
double interface has formed early in the phase ordering, i
follows. For an ambient supersaturations8 below the critical
value

sc5~rB2rA!A2p~rB2rC!S 1

rB2rA
1

1

rD2rC
DD2

D1
,

~24!

there is no asymptotic behavior since the metastable re
collapses in a finite time and subsequent evolution is via
ordinaryg-s mode of interface propagation. Above the cri
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cal supersaturation, the metastable phase grows with t
according to Eq.~23!. Notice, with reference to Fig. 2~b!,
that rB2rC is a measure of the metastability of the liqu
phase. Hence, at the triple point, when the three wells ha
single common tangent, the critical supersaturation given
Eq. ~24! goes to zero. In other words, at the triple point,
supersaturation is required to stabilize the liquid phase
the physics is modeled successfully in this respect.

So far, we have concentrated on the sizeD of the meta-
stable region, but the growth of the solid region is also
interest. For the double-interface mode of evolution, the s
of the solid region is given, from Eqs.~14! and ~16!, by

x2~ t !5S rB2rC

rD2rC
DD2E

0

t dt8

D~ t8!
.

Substituting the asymptotic expression forD @Eq. ~23!# into
this formula and using Eq.~18! for t gives the result

x25
2Ap

~11A12g!

D2

AD1
S rB2rC

rD2rC
D S rB2rA

s8
DAt.

Notice that this isinverselyproportional to the~adjusted!
supersaturation. It is interesting to compare this with the s
of a solid region produced by normal interface motion~i.e.,
by a singleg-s interface!. To compare like with like, we
should use the linearized velocity coefficient@Eq. ~11!, with
rB2rA replaced byrs2rg for the interface height# together
with Eq. ~8!. Denoting the size of the solid region produc
by single interface motion byxsing, we find

xsing5
2

Ap
S s

rs2rg
DAD1t.

Let z be the ratio of the size of the solid region produced
the double-interface mode of growthx2 to that produced by
normal growthxsing. Then

z5
p

11A12g
S rB2rA

s8
D S rs2rg

s DD2

D1

rB2rC

rD2rC
.

There is a distinct similarity between this formula and t
expression for g @Eq. ~19!#. If we approximate
(rD2rA)1(rB2rC) by rs2rg , which we see, from Fig.
2~b!, is usually a good approximation, then we find

z'
g

2~11A12g!

s8

s
.

Since 0,g,1 for the split-interface mode of growth an
alsos8,s, it follows that

z,
g

2
~25!

and that, well above the critical supersaturation,z'g/4.
Let us recapitulate the properties of the parameterg. It

appeared in Eq.~17! as an attractive coupling between th
g-l andl -s interfaces. It is the ratio of properties of the liqu
phase, tending to attract the interfaces, to properties of
e,
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gaseous phase, tending to separate them. It characterize
classes of solutions of Eq.~17!, being greater than unity fo
diffusively bound solutions and less than unity for unbou
solutions. Finally, we see in Eq.~25! that it gives an upper
bound ~and an order of magnitude! for the ratio of growth
rates of the solid phase in the split and normal modes
growth. Sinceg,1 when the split mode occurs, Eq.~25!
shows that this mode of evolutionsuppressesthe growth of
the solid.

Note that, in Fig. 2~b!, the metastability of the middle
well leads to the inequalityrB.rC . If this liquid well were
stable~i.e., below the double tangent to the outer two well!,
the inequality would be violated. Hence it is reasonable
define the metatability m of the middle well to be
m[rB2rC . With reference to Eq.~24!, we see that the
boundary between regions of the (m,s8) plane, for which
the g-l and l -s interfaces are diffusively bound or unboun
is of the form shown in Fig. 7. A naive expectation would
for a boundary coincident with the vertical axis, but we s
that this is not the case.@For negatives8, for which the
liquid phasemustdissolve into the gas, we find solutions o
Eq. ~17! are again given by Eqs.~20!–~22!, but with different
ranges of the parametersu andf leading to closed trajecto
ries wheneverg.0.#

V. DISCUSSION

Some nonequilibrium effects in colloid-polymer mixture
have been reviewed in Sec. II. We have remarked on
presence of a well-defined nonequilibrium boundary in
phase diagram, close to the theoretically calculated posi
of the hidden gas-liquid metastable binodal. This metasta
binodal is central to the theoretical model developed in S
IV, where the position of its low-density branch was denot
by rA . A system homogenized by shear melting to an a
bient density of exactlyrA would, in the notation of Sec. IV,
have a vanishing adjusted supersaturations850. In the
model, this value has the special significance that, fors8.0,
a region of metastable liquid has an initial period of grow
before it collapses. At lower densities, any liquid region th
is nucleated will immediately shrink. In experiment
samples with a colloidal density above the nonequilibriu
line in the phase diagram, the growth of crystals

FIG. 7. Regions of metastabilitym[rB2rC and adjusted su-
persaturations8 for which interfaces are diffusively bound or un
bound.
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observed to be suppressed. This happens in the mode
s8.sc .

In practice, the liness850 ~the metastable binodal! and
s85sc may be experimentally indistinguishable, for tw
reasons. First, no very accurate theoretical prediction ex
for the position of the metastable binodal in the phase d
gram. Attempting to make quantitative comparisons of ti
scales with experiment, using the best available theories
the values ofrA , rB , rC, andrD , results in uncertainties o
several hundred percent in the value ofg. Second, the line
s85sc may be very close to the metastable binodal ifsc is
small. @From Eq.~24!, this would occur if, e.g., the middle
well in the potential were only slightly metastable or if th
diffusion constant were much lower in the liquid than in t
gas.# If sc is small then, writingg5(sc /s8)2 for rB.rC ,
we see thatg will decrease rapidly with increasing colloida
density and so, from Eq.~25!, suppression of crystal growt
will be pronounced at densities not far from the metasta
binodal.

It seems, then, that the model presented here provid
plausible theoretical basis for the previous conjecture that
onset of nonequilibrium behavior in certain colloid-polym
mixtures is associated with the presence of a hidden
liquid binodal. It is, however, a greatly simplified and idea
ized picture and we should consider the ways in which
deviates from reality, and the implications for the resulta
interfacial dynamics.

The model is one dimensional and therefore ignores
face tension. This is justifiable since, once a region
grown considerably larger than the critical nucleus size, s
face tension has a negligible effect on interfacial motion d
ing the growth stage@14#. It is at these intermediate to lat
times that our model describes the system. Dimensionalit
also relevant to the time dependence of the long-range d
sion. This will have a quantitative effect on the predict
values of the critical supersaturation and the degree of s
pression of crystal growth, etc. but we may conjecture t
the qualitative features of the model’s behavior will exte
to three dimensions. The fact that our one-dimensio
model does not explicitly address intrinsically highe
dimensional geometric effects, such as the Mullins-Seke
instability @16#, may not be important. The model gives
the general rule of thumb that, above a certain critical sup
saturation, the crystalline regions~whatever shapes they ma
be!, which would normally grow in a two-well system, ar
replaced, in the presence of a third well, by a metasta
liquid. Subsequent to this growth stage, the metastable liq
is slowly transmuted into the ‘‘correct’’ equilibrium phas
i.e., crystal.

Probably a more drastic simplification is the semi-infin
extent of the ambient gaseous region in the model. In rea
there is more than one nucleus of the solid phase. There
be some typical internucleus spacingLnuc in the system. The
concentration profile in the gaseous region has a charact
tic length scaleAD1t, so when this is of orderLnuc, the
nuclei begin to influence each other. After this time, the
fective asymptotic supersaturation begins to fall, as the
gions of depletion of the gas phase around the nuclei beg
overlap. This characteristic time to deplete the supersat
tion of the gaseous phase may be denotedtdep (;Lnuc

2 /D1).
At this point, the metastable region around each nucleus
for
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sizeD(tdep), which is given in Eq.~23!. The remaining life-
time of the metastable regions may be calculated from E
~20!, as the time for a region initially of this size to collaps
in a system with adjusted supersaturation of zero. The t
lifetime of the metastable phase is thus of ordertdep/g.
~Compare this with the naive calculation for a semi-infin
gaseous region, which gives a suppression of size of the s
region by a factor of orderg, and hence a time scale factore
by 1/g2, rather than 1/g.! We note that ifsc is small, then
the lifetime of the metastable phase (s8/sc)

2 tdepgrows rap-
idly with the ambient density. Once the metastable regio
have collapsed andg-s interfaces form, the densities wil
diffusively readjust fromrA andrD to rg andrs , in a rela-
tively short time.

This whole discussion assumes that all interfaces in
system are undergoing the split mode of propagation~i.e.,
with g-l and l -s parts not bound together by curvature,
discussed in Sec. IV and Ref.@8#!. Any ‘‘normal’’ ( g-s)
interfaces initiated in the system during nucleation will le
to the formation of large crystals on normal diffusive tim
scales. Such crystals are not observed experimentally ab
the nonequilibrium boundary. Therefore, our model is a go
candidate for the physics of the nonequilibrium boundaryif,
for some reason, only split interfaces are generated du
nucleation above this boundary. Such a scenario is not
reasonable. We have seen that diffusively bound interfa
are unbound by a sufficiently large supersaturation. It see
likely @8# ~and has in fact been observed in a prelimina
numerical study@9#! that ag-s interface~which is stabilized,
or ‘‘bound’’ by a contribution to the chemical potential o
the form 2¹2r) may be split or ‘‘unbound’’ in a manne
analogous to diffusive unbinding and, furthermore, that
critical supersaturation to cause this is close in magnitud
that calculated here. This conjecture is based on the fact
in a model that includes an extra¹2r term in the chemical
potential to describe curvature effects~such as the Cahn
Hilliard model!, the curvature term exactly balances the d
fusive term in an equilibrium interface and hence quantit
calculated from it will, in the main, be of the same order
magnitude as those calculated from the diffusive term on

VI. RELATED SYSTEMS

The model we have investigated in this paper was or
nally suggested by experimental observations in mixtures
sphericalcolloids and nonadsorbing polymers of a substa
tially smaller size. The same model may, however, be ap
cable to other experimental systems.

First of all, it has been pointed out recently by one of
that the hidden binodal is probably significant for unde
standing the crystallization of globular proteins@17#. The
kinetic predictions of this paper may therefore also be r
evant in that context.

Furthermore, our model is probably directly relevant
mixtures of rodlike colloids and nonadsorbing polymer
@18#. The two possible phase diagram topologies for this s
tem are again those given in Figs. 2~a! and 2~b!, but with the
labels gas, liquid, and solid replaced byI 1, I 2, andN ~stand-
ing for isotropic phases 1 and 2 and the nematic pha!.
Once more, three-phase coexistence disappears when th
of the polymer~relative now to the rod length! decreases
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below a critical value. In this case@compare Fig. 2~b!#, the
addition of sufficient polymer to a suspension of rods lea
to slow phase separation into an isotropic and a denser
existing nematic phase, the latter being distinguished
strong birefringence. Further addition of polymers, howev
brings about a different kind of behavior: A weakly birefrin
gent, ‘‘expanded’’ phase, which contains most of the rodl
particles, separates out quickly@19#. It has been suggeste
@19# that the suppression of isotropic-nematic phase sep
tion is due to the presence of a hidden isotropic-isotro
binodal.

Let us return to spherical colloid and polymer mixtures.
the previous sections, we have concentrated on polym
colloid size ratiosj sufficiently small for no liquid phase to
appear in the equilibrium phase diagram@Fig. 1~b!#. Now
consider the case where the polymer is large enough to
rise to a thermodynamically stable gas-liquid binodal, as
pears in Fig. 1~a!. Note that, in the ‘‘gas1 solid’’ region of
Fig. 1~a!, the form of f (r) is as sketched in Fig. 2~b! and
hence the model set up in this paper is again relevant.
expanded version of the phase diagram near the triple
now showing the metastable portions of the gas-liquid b
odal, is sketched in Fig. 8. As the triple line is approach
from above (m→mp

tr), where the liquid well is only just
metastable, the critical supersaturation vanishes (sc→0) be-
causerB2rC→0; see Fig. 2~b! and Eq.~24!. At higher val-
ues ofmp , we expect another regime wheresc→0, this time
due to the vanishing of the diffusion coefficient in the liqu
phaseD2 @see Eq.~24!#. As mp increases, the density of th
metastable liquid phaserB also increases; eventuall
rB→rglass, the density at which the system vitrifies, wi
D2→0.

FIG. 8. Phase diagram in Fig. 1~a! redrawn schematically to
emphasize the portion above the triple coexistence line atmp

tr . Here,
within the equilibrium gas plus solid coexistence region, the me
stable gas-liquid binodal is the dotted linesr5rA(mp) and
r5rB(mp). The bold curves indicate the likely positions of parts
the diffusive unbinding boundaryr5rA1sc(mp). Near the triple
coexistence line, the boundary meets the gas branch of the m
stable binodal because the liquid well in the free-energy densit
only marginally metastable. Atmp

glass, the liquid branch of the meta
stable binodal reaches the vitrification densityr glass. In this vicin-
ity, the critical supersaturation curve is again close to the gas bra
of the metastable binodal, now because of the vanishing diffus
constant in the liquid phase.NC indicates regions where we expe
disruption of crystallization, while normal gas-crystal coexistenc
expected in the hatched area.
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We can thus speculate on the form of the boundary
diffusive unbinding,r5rA(mp)1sc(mp), in the vicinity of
the gas branch of the metastable binodal~Fig. 8!. The pre-
diction is that, for moderate colloid densities, there should
a region of suppressed crystallization immediately above
triple coexistence line~due to the very marginal metastabilit
of the liquid minimum in the free-energy density! followed,
for highermp , by normal crystallization behavior and endin
up with crystallization suppression again at the highest v
ues ofmp ~due to the vitrification of the metastable liqui
phase!. Experimentally, the former nonequilibrium regio
has not been observed@11#. A search for this phenomenon i
under way in our laboratory. However, the region of norm
crystallization has been reported, as has a nonequilibr
boundary at highermp @11#, where it has been suggested@20#
that vitrification of a dense phase does play a crucial role

We speculate that the theoretical results contained in
paper should have some relevance to a number of other c
plex fluid systems in which metastability is known to play
key role in phase transformations, including the crystalliz
tion of the ‘‘monotropic liquid crystal,’’ poly-n-nonyl-
4-48-biphenyl-2-chloroethane, via an intermediate, me
stable nematic phase@21# and the crystallization of poly~phe-
nylene ether! in cyclohexanol, where deep quenches p
duces first a fluid-fluid phase separation@22#. We
acknowledge, however, that the limitations of our model d
cussed in Sec. V, together with the likelihood that latent h
may not be negligible in at least some instances, necessi
further research before reaching firm conclusions on its
plicability.

VII. CONCLUSION

We have studied a simple model for diffusion-limited k
netics of phase ordering in a system whose free-energy
sity has a metastable third well, at a density intermediate
the two equilibrium phases. In such systems, we have fo
a mechanism whereby a region of the metastable phase
grow ad infinitum at the expense of the equilibrium den
phase if the mean density of the system is above a crit
threshold. This behavior appears to be consistent with
nonequilibrium ordering dynamics and suppression of cry
growth observed experimentally in colloid-polymer mi
tures. In the experimental system, as in the theoretical mo
the onset of anomalous behavior occurs at a well-defi
density.

The important lesson of this study~and the preceding pa
per @8#! is that any pair of concentrations, which can
linked by a double tangent on the graph of free-energy d
sity versus concentration, may give rise to an interface in
evolving system. Although only the globally stable binod
densities will coexist in the equilibrated system, local a
transient coexistence can occur betweenanybinodal pairs of
densities in a system that has not yet discovered its glo
equilibrium state. Hence metastable phases cannot be o
looked when modeling phase ordering. Indeed, their imp
tance has long been accepted on an empirical level, par
larly in a metallurgical context@23,13#. Ostwald’s ‘‘rule of
stages,’’ for example@24#, asserts that the transformatio
from one stable phase to another proceeds via all metas
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intermediates in turn. We have, in the present paper, a ra
nale for the consideration of such phases in a soft conde
matter setting.
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APPENDIX A: EVALUATION OF INTEGRALS

Dividing Eq. ~6! by Eq. ~7! and using the appropriat
functional forms forx1(t) and s(t), and the substitution
t85u2t to eliminate dimensionality from the integrands, w
find the relation between the velocity coefficient and the re
tive supersaturations/(rB2rA)5I 1 /I 2 where

I 1[E
0

1 du

A12u2
exp2

a2~11u!

4~12u!
,

I 2[E
0

1 du

~12u!A12u2
exp2

a2~11u!

4~12u!
.

Making a further change of variablesv25(11u)/(12u)
yields

I 25E
1

`

e2a2v2/4dv5
Ap

a
erfc

a

2
,

.

d,

a

ss

v.

ys

.

s

o-
ed

-
s

-

I 152E
1

`e2a2v2/4

11v2
dv52ea2/4E

1

`e2~a2/4!~11v2!

11v2
dv.

We see thatI 1 and I 2 are related by a derivative

d

da
~ I 1e2a2/4!52aI2e2a2/4.

HenceI 1 is given by the indefinite integral

I 152Apea2/4E e2a2/4 erfc
a

2
da,

whose constant of integration is set by noting thatI 1 van-
ishes asa→`. This integral is soluble by parts, using

E erfc x dx5x erfc x2
e2x2

Ap
1const.

The solution is

I 15
p

2
ea2/4S erfc

a

2D 2

,

from which Eq.~9! follows.
J.

.

.

ly-
@1# J. M. Gunton, M. San Miguel and P. S. Sahni, inPhase Tran-
sitions and Critical Phenomena, edited by C. Domb and J. L
Lebowitz ~Academic, London, 1983!, Vol. 8, Chap. 3.

@2# A. J. Bray, Adv. Phys.43, 357 ~1994!.
@3# W. C. K. Poon and P. N. Pusey, inObservation, Prediction

and Simulation of Phase Transitions in Complex Fluids, edited
by M. Baus, L. F. Rull, and J.-P. Ryckaert~Kluwer, Dordrecht,
1995!, p. 3.

@4# Y. M. He, B. J. Ackerson, W. van Megen, S. M. Underwoo
and K. Schatzel, Phys. Rev. E54, 5286~1996!.

@5# W. van Megen and S. M. Underwood, J. Phys.: Condens. M
ter 6, A181 ~1994!.

@6# P. N. Pusey, A. D. Pirie, and W. C. K. Poon, Physica A201,
322 ~1993!.

@7# W. C. K. Poon, A. D. Pirie, and P. N. Pusey, Faraday Discu
101, 65 ~1995!.

@8# R. M. L. Evans and M. E. Cates, preceding paper, Phys Re
56, 5738~1997!.

@9# R. M. L. Evans, W. C. K. Poon, and M. E. Cates, Europh
Lett. 38, 595 ~1997!.

@10# H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A
Stroobants, and P. B. Warren, Europhys. Lett.20, 559 ~1992!.

@11# S. M. Ilett, A. Orrock, W. C. K. Poon, and P. N. Pusey, Phy
Rev. E51, 1344~1995!.
t-

.

E

.

.
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